PROCÉDÉS LASER POUR L’INDUSTRIE
Conférences

Laser Processing for Industry Conference

PROGRAMME DES CONFÉRENCES

CONFERENCE PROGRAMME

25 & 26 septembre 2019

Colmar · Grand Est
Plénière d’ouverture

Opening plenary

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker/Institution</th>
<th>Talk/Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Discours d’ouverture / Opening talk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td>Soudage laser par scanner pour les structures et mécanismes de sièges d’automobiles : Situation actuelle et perspectives Remote laser welding for automotive seat structures and mechanisms: Today and tomorrow</td>
<td>FAURECIA Luc LEPORTEIR</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Micro et nanostructuration laser 3D en volume; fonctions avancées dans les matériaux optiques avec des faisceaux laser ultra-rapides 3D laser micro and nanostructuring in volume; advanced functions in optical materials with ultrafast engineered laser beams</td>
<td>UNIVERSITÉ DE SAINT-ETIENNE Razvan STOIAN</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Pause-café / Coffee break</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Session : Soudage / Assemblage multimatiériaux

Session: Welding / Multi materials assembly

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker/Institution</th>
<th>Talk/Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>Utilisation du scanner en soudage laser métallique : une nouvelle opportunité pour l’industrialisation Galvo scanner for metal laser welding: a new opportunity for the industry</td>
<td>IREPA LASER Frédérique MACHI</td>
<td></td>
</tr>
<tr>
<td>11:20</td>
<td>Soudage laser avec défaut de joint d’accostage Laser welding of parts with gap</td>
<td>FIVES MACHINING Christian SBINNE</td>
<td></td>
</tr>
<tr>
<td>11:40</td>
<td>Annoncé prochainement To be announced soon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Utilisation d’inserts en vanadium ou niobium purs pour le soudage laser dissimilaire du titane à l’acier inoxydable / Use of pure vanadium or niobium inserts for dissimilar laser welding of titanium to stainless steel</td>
<td>LASER RHÔNE-ALPES Antoine MANNUCCI</td>
<td></td>
</tr>
<tr>
<td>12:20</td>
<td>Buffet gourmand / Buffet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:10</td>
<td>Soudage laser hybride : un procédé adapté aux contraintes actuelles d’allègements des structures Hybrid laser welding for lightweight structures</td>
<td>INSTITUT MAUPERTUIS David LEMAÎTRE</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>Soudure étanche sur tôles d’inox faibles épaisseurs, grandes dimensions Watertight seal on large and thin stainless steel sheets</td>
<td>LASER CHEVAL Emric VERWAERDE</td>
<td></td>
</tr>
<tr>
<td>14:50</td>
<td>Applications de soudage innovantes avec laser fibre forte puissance Innovative welding application with High Power fiber Laser</td>
<td>IPG PHOTONICS Laurent WEBER</td>
<td></td>
</tr>
<tr>
<td>15:10</td>
<td>Soudage laser de thermoplastiques pour la fabrication de nids d’abeilles Laser welding of thermoplastics for honeycomb manufacturing</td>
<td>INNOPTICS Stéphane DENET</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>Les applications de soudage laser dans le domaine de l’électro-mobilité New applications of laser welding for electromobility</td>
<td>TRUMPF Sylvain BEAUSIRE</td>
<td></td>
</tr>
<tr>
<td>15:50</td>
<td>Pause-café / Coffee break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td>Nouvelle approche du soudage des matériaux par le procédé CleanWeld New approach of laser welding of materials with the CleanWeld Process</td>
<td>COHERENT Laurent MENUAT</td>
<td></td>
</tr>
<tr>
<td>16:50</td>
<td>Soudage de métaux dissemblables avec des lasers à fibres pulsés ns Dissimilar metal welding with ns pulsed fiber lasers</td>
<td>SPI LASERS Christophe CODEMARD</td>
<td></td>
</tr>
<tr>
<td>17:10</td>
<td>Nouvelles opportunités pour le traitement du cuivre avec des sources laser bleues au kilowatt / New Opportunities for Copper Processing with Kilowatt Blue Laser Sources</td>
<td>LASERLINE André ELTZE</td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>Soirée networking / Networking evening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session : Micro / Texturation / Surface et intra volume
Session: Micro / Texturing / Surface and in-volume processing

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>LASEA</td>
<td>Combinaison de la mise en forme et de la division de faisceaux pour les applications de découpe et de perçage avec des lasers femtoseconde haute puissance</td>
</tr>
<tr>
<td></td>
<td>José Antonio RAMOS</td>
<td>Combination of beam shaping and beam splitting for precision cutting and drilling with high power ultrafast lasers</td>
</tr>
<tr>
<td>11:20</td>
<td>ALPHANOV</td>
<td>Texturation bidimensionnelle de surface en acier inox par irradiation laser femtoseconde à double impulsion</td>
</tr>
<tr>
<td></td>
<td>Girolamo MINCUZZI</td>
<td>Sub wavelength, two-dimensional, stainless steel surface structuring by industrial, double pulses, femtosecond laser</td>
</tr>
<tr>
<td>11:40</td>
<td>IREPA LASER</td>
<td>Maturation chimique de la texturation superhydrophobe des métaux</td>
</tr>
<tr>
<td></td>
<td>Thierry ENGEL</td>
<td>Chemical maturation of superhydrophobic texturing on metals</td>
</tr>
<tr>
<td>12:00</td>
<td>IRT SAINT EXUPÉRY</td>
<td>Préparation de surface laser avec collage</td>
</tr>
<tr>
<td></td>
<td>Antoine MERCIER</td>
<td>Laser surface preparation for adhesive bonding</td>
</tr>
<tr>
<td>12:20</td>
<td>Buffet gourmand</td>
<td>Buffet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:10</td>
<td>ICUBE</td>
<td>Augmentation de la distance de travail pour le micro-usinage par nanojet photonique</td>
</tr>
<tr>
<td></td>
<td>Sylvain LECLER</td>
<td>Working distance increase in photonic nanojet laser micro-processing</td>
</tr>
<tr>
<td>14:30</td>
<td>IFW</td>
<td>Matrice de micro lentilles produites par irradiation laser CO2</td>
</tr>
<tr>
<td></td>
<td>Thomas SCHMIDT</td>
<td>Micro lens arrays made by CO2-laser radiation</td>
</tr>
<tr>
<td>14:50</td>
<td>ERNST–ABBE UNIVERSITY OF APPLIED SCIENCES JENA</td>
<td>Nouveau procédé pour la fabrication de pièces en verre à géométrie 3D complexes</td>
</tr>
<tr>
<td></td>
<td>Sébastien HENKEL</td>
<td>Development of a novel manufacturing chain for efficient fabrication of complex 3D glass elements</td>
</tr>
<tr>
<td>15:10</td>
<td>ALPHANOV</td>
<td>Étude de faisabilité du procédé laser shock peening à haute cadence sur alliage Al2024-T351</td>
</tr>
<tr>
<td></td>
<td>Guillaume LAFOY</td>
<td>Feasibility study of high-repetition rate laser shock peening on Al2024-T351</td>
</tr>
<tr>
<td>15:30</td>
<td>MANUTECH USD</td>
<td>L’utilisation du laser femtoseconde: du concept à l’industrialisation</td>
</tr>
<tr>
<td></td>
<td>Nicolas COMPERE</td>
<td>Use of femtosecond laser, from concept to industrialization</td>
</tr>
<tr>
<td>15:50</td>
<td>Pause-café / Coffee break</td>
<td></td>
</tr>
</tbody>
</table>
Session : Nouvelles technologies et composants laser

Session: New laser technologies and components

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
</table>
| 8:40 | AMPLITUDE Guillaume SZYMCZAK | Dernières évolutions pour les lasers ultra courts
Recent advances in ultrafast lasers |
| 9:00 | FEMTO EASY Antoine DUBROUIL | Dispositif OEM avec et sans boucle de rétro action pour l’optimisation du profil spatial, spectral et temporel des impulsions laser ultrabrèves
OEM ready measurement devices and feedback loop for spatial, spectral and temporal optimization of ultrafast lasers |
| 9:20 | FOBA Faycal BENAYAD-CHERIF | Procédé Mosaic : diminution des coûts du marquage laser par détection automatique de la position des pièces et élimination des outillages
Mosaic process : cost reduction in laser marking by automatic part detection and by handling tool removal |
| 9:40 | CEPELEC Damien VILLARD | Gestion de la pollution générée par usinage laser
Material processing induced pollution management |
| 10:00 | CELIA CNRS Guillaume BONAMIS | Laser femtoseconde UV GHz de forte puissance moyenne
High power UV GHz femtosecond laser |
| 10:20 | Pause-café / Coffee break | |

Session : Contrôle de procédé / Mise en forme / Déflection / Délivrance

Session: Process control / Beam shaping / Deflection / Delivery

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
</table>
| 11:00 | QIOVA Florent THIBAULT | Mise en forme multifaisceaux programmable : un nouvel outil pour l’usinage laser à forte valeur ajoutée
Multibeam programmable laser beam shaping: a new tool to enable high value-added laser processing |
| 11:20 | CAILABS Pu JIAN | Mise en forme et stabilisation de faisceau laser monomode par Conversion Multi-Plan de la Lumière pour l’usinage et la transformation de la matière
Laser beam shaping and stabilization for singlemode laser material processing based on Multi-Plane Light Conversion |
| 11:40 | AMPLITUDE Eric AUDOUARD | Synchronisation laser/procédés pour l’usinage femtoseconde à grande vitesse
Laser-process synchronization for high throughput femtosecond laser material processing |
| 12:00 | LASER MÉTROLOGIE Marco SOSCIA | Radiométrie laser : application à quelques procédés complexes
Laser radiometry : applications for complex processes |
| 12:20 | Buffet gourmand / Buffet | |
Session : Fabrication additive
Session: Additive manufacturing

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker/Institution</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 8:40 | **ERNST-ABBE UNIVERSITY OF APPLIED SCIENCES** JENA Anne-Marie SCHWAGER | Frittage laser sélectif de poudre de verre
Selective laser sintering of glass powder |
| 9:00 | **INSTITUT FRESENL - SATT SUDEST** Thomas DOUALLE | Impression 3D de pièces centimétriques par procédé de photopolymérisation multiphonique de résines chargées en nanoparticules
Three-dimensional printing of centimetric pieces via multiphoton polymerization process in acrylic resins loaded with nanoparticles |
| 9:20 | **IREPA LASER** Damien CHORON | Fabrication Additive Directe par Laser du composé intermétallique TiAl par dépôt de poudre sous énergie concentrée (DED)
Direct Laser Additive Manufacturing of TiAl Intermetallic Compound by Powder Directed Energy Deposition (DED) |
| 9:40 | **OPHIR-MKS** Nicolas MEUNIER | Comment garantir des paramètres laser reproductibles en fusion laser sélective
How to ensure reproducible laser beam parameters in Selective Laser Manufacturing processes |
| 10:00 | **BIAS** Raik DÖRFERT | Mesure de champ de températures in-situ autour du bain fondu en fabrication additive laser
Coaxial implementation of a temperature field monitoring device for in-situ melt pool measurements in additive manufacturing |
| 10:20 | Pause-café / Coffee break | |
| 11:00 | **COHERENT** Laurent MENUAT | Procédé innovant de fabrication 3D pour une meilleure productivité, créativité et qualité de surface
Innovative 3D manufacturing process presentation allowing productivity increase, surface quality for industrial parts |
| 11:20 | **PRECITEC** Markus KOGEL-HOLLACHER | Fabrication additive laser et impression 3D : nouveaux concepts de capteurs et fabrication additive laser par dépôt de fil
Laser metal deposition and 3D printing – New sensor concepts for LMD and innovative system technology for additive processes with wire |
| 11:40 | **IREPA LASER** Vaibhav NAIN | Simulation numérique pour la fabrication additive des grandes pièces : critères de choix pour le compromis entre temps de calcul et prise en compte des phénomènes physiques
Numerical simulation for the additive manufacturing of large parts: choice criteria for the compromise between computing time and taking into account physical phenomena |
| 12:00 | **BEAM MACHINES** Hannes FREISSE | Enquêtes sur l’alimentation en poudre dans la DED
Investigations on powder feeding in DED |
| 12:20 | Buffet gourmand / Buffet | |

Plénière de clôture
Closing plenary

<table>
<thead>
<tr>
<th>Time</th>
<th>Institution</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 14:30 | **NKT PHOTONICS** Rajesh S. PATEL | Passer du micro-usinage au laser nanoseconde à femtoseconde
Moving from nanosecond to femtosecond laser micromachining |
| 15:00 | **LNE-CNAM** Gael OBEIN | Mesurer l’apparence; approche optique, visuelle et normative
Measurement of appearance; optical, visual and normative approach |
| 15:30 | **IFSW - UNIVERSITÉ DE STUTTGART** Thomas GRAF | Le laser: un outil universel pour l’industrie 4.0
The laser: a universal tool for Industry 4.0 |
| 16:00 | Discours de clôture / Closing talk | |